sexta-feira, 13 de novembro de 2015

FOTOSSINTESE

A fotossíntese é o principal processo autotrófico e é realizada pelos seres clorofilados, representados porplantasalguns protistasbactérias fotossintetizantes e cianobactérias.
Na fotossíntese realizada pelos seres fotossintetizantes, com exceção das bactérias, gás carbônico (CO2) e água (H20) são usados para a síntese de carboidratos, geralmente a glicose. Nesse processo há a formação de oxigênio (O2), que é liberado para o meio.

A fotossíntese realizada pelas bactérias fotossintetizantes difere em muitos aspectos da realizada pelos demais organismos fotossintetizantes, como veremos a seguir.
A fórmula geral da produção de glicose pela fotossíntese dos eucariotos e cianobactérias é:
6 CO2 + 12 H2O      C6H12O6 + 6 O2 + 6 H2O

Essa equação mostra que, na presença de luz e clorofila, o gás carbônico e a água são convertidos em uma hexose – neste exemplo, a glicose -  havendo liberação de oxigênio.

Os seres fotossintetizantes são fundamentais para a manutenção da vida em nosso planeta, pois são a base da maior parte das cadeias alimentares e produzem oxigênio, gás mantido na atmosfera em concentrações adequadas graças principalmente a atividade fotossintética.

Origem do oxigênio e fotossíntese bacteriana
oxigênio liberado pela fotossíntese realizada pelos eucariontes e pelas cianobactérias provém da água, e não do gás carbônico, como se pensava antigamente.

O primeiro pesquisador a propor isso foi Cornelius Van Niel, na década de 1930, quando estudava bactérias fotossintetizantes. Ele verificou que as bactérias vermelhas sulfurosas (ou tiobactérias púrpuras) realizavam uma forma particular de fotossíntese em que não havia necessidade de água nem formação de oxigênio. Essas bactérias usam gás carbônico e sulfeto de hidrogênio (H2S) e produzem carboidrato e enxofre.
Van Niel escreveu, então, a fórmula geral da fotossíntese realizada por essas bactérias:
Fotossíntese bacteriana
6 CO2+ 2 H2S      CH2O + H2O + 2 S
Foi a compreensão desse processo de fotossíntese que levou o pesquisador a propor a equação geral da fotossíntese:

6 CO2+ 2 H2A     CH2O + H2O + 2 A
Essa equação mostra que H2A pode ser a água (H2O) ou o sulfeto de hidrogênio (H2S) e evidencia que, se for água ela é a fonte de oxigênio na fotossíntese.

Essa interpretação foi confirmada posteriormente, na década de 1940, por experimentos em que pesquisadores forneciam às plantas água cujo oxigênio era de massa 18 (O18, isótopo pesado do oxigênio) em vez de 16 (O16), como o oxigênio da água comum. Eles verificaram que o oxigênio liberado pela fotossíntese era o O18, corroborando a interpretação de Van Niel. 
Ficou comprovado, então, que o oxigênio liberado durante a fotossíntese dos eucariontes e das cianobactérias provém da água e não do gás carbônico.Fotossíntese é um processo físico-químico, a nível celular, realizado pelos seres vivos clorofilados, que utilizam dióxido de carbono e água, para obter glicoseatravés da energia da luz solar, de acordo com a seguinte equação:
Luz solar + 12H2O + 6CO2 → 6O2 + 6H2O + C6H12O6
A fotossíntese inicia a maior parte das cadeias alimentares na Terra. Sem ela, os animais e muitos outros seres heterotróficos seriam incapazes de sobreviver porque a base da sua alimentação estará sempre nas substâncias orgânicas proporcionadas pelas plantas verdes.

A relação da cor verde das plantas com a luz[editar | editar código-fonte]

Aristóteles tinha observado e descrito que as plantas necessitavam de luz solar para adquirir a sua cor verde. No entanto, só em 1771, a fotossíntese começou a ser estudada por Joseph Priestley. Este químico inglês, confinando uma planta numa redoma de cristal comprovou a produção de uma substância que permitia a combustão e que, em certos casos, avivava a chama de um carvão em brasa. Posteriormente, concluiu-se que a substância observada era o gás oxigênio.
As plantas possuem folhagem de coloração verde pois essa frequência de onda eletromagnética é refletida por não ser aproveitada de forma eficiente no processo da fotossíntese em que se converte a energia luminosa em química. Dessa forma, se um vegetal for iluminado somente com luz monocromática verde a taxa de fotossíntese será insuficiente para garantir a sua sobrevivência e ocorrerá a atrofia dos tecidos da planta, podendo resultar na morte do organismo.
Enquanto a luz verde é a que gera o menor rendimento fotossintético, as frequências de luz azul, violeta e vermelho são as que apresentam o maior índice de absorção pela clorofila. [1]

A descoberta da fotossíntese[editar | editar código-fonte]

Em 1778Jan Ingenhousz, físico-químico neerlandês, verificou que uma vela colocada dentro de um frasco fechado não se apagava, desde que houvesse também no frasco partes verdes de plantas e o frasco estivesse exposto à luz, ou seja, que na presença de luz, as plantas libertam oxigénio.[2]

A incorporação da água pelas plantas[editar | editar código-fonte]

Nicolas-Théodore de Saussure, já no início do século XIX descobriu que os vegetais incorporavam água em seus tecidos. Com o passar do tempo, os avanços no campo óptico e as tecnologias de estudo aprimoradas, possibilitaram os conhecimentos em relação a nutrição vegetal.

A descoberta da retirada de nutrientes do solo[editar | editar código-fonte]

Células vegetais com cloroplastos visíveis.
Uma observação importante foi que o azoto, assim como diversos sais e minerais, era retirado do solo pelas plantas e que a energia proveniente do Sol se transformava em energia química, ficando armazenada numa série de produtos em virtude de um processo que então acabou por ser chamado de fotossíntese.
A substância chamada de clorofila foi isolada na segunda década do século XIX. Ainda naquele século, descobriu-se que a clorofila era a responsável pela cor verde das plantas, além de desempenhar um papel importante na síntese da matéria orgânicaJulius von Sachs demonstrou que a clorofila se localizava nos chamados organelos celulares, que, por meio de estudos mais apurados, foram chamados de cloroplastos.

A reprodução do ciclo da clorofila em laboratório[editar | editar código-fonte]

Ao avançarem as técnicas bioquímicas, em 1954 foi possível o isolamento e extracção destes organelos. Foi Daniel Israel Arnon quem obteve cloroplastos a partir das células do espinafre, conseguindo reproduzir em laboratório as reações completas da fotossíntese.

As etapas da fotossíntese[editar | editar código-fonte]

Com estas técnicas, descobriu-se, por exemplo, que a fotossíntese ocorre ao longo de duas etapas:
  • A fase fotoquímica, fase luminosa ou fase clara (fase dependente da luz solar) é a primeira fase do processo fotossintético. Essa fase ocorre nos tilacoides. Seu evento principal é a fotofosforilação, que é a adição de fosfato inorgânico (Pi) ao difosfato de adenosina (ADP). A energia luminosa é captada por meio de pigmentos fotossintetizantes, capazes de conduzi-la até o centro de reação. Tal centro é composto por um par de clorofilas α, também denominado P700. Os elétrons excitados da P700 saem da molécula e são transferidos para uma primeira substância aceptora de elétrons, a ferredoxina. Esta logo os transfere para outra substância, e assim por diante, formando uma cadeia de transporte de elétrons. Tais substâncias aceptoras estão presente na membrana do tilacoide. Nessa transferência entre os aceptores, os elétrons vão liberando energia gradativamente e esta é aproveitada para transportar hidrogênio iônico de fora para dentro do tilacoide, reduzindo o pH do interior deste. A redução do pH ativa o complexo proteico "ATP sintetase". O fluxo de hidrogênios iônicos através do complexo gira, em seu interior, uma espécie de "turbina proteica", que promove a fosforilação de moléculas de adenosina difosfato dando origem à adenosina trifosfato (ATP). Ao chegarem ao último aceptor, os elétrons têm nível energético suficientemente baixo e retornam ao par de clorofilas 'a', fala-se em fotofosforilação cíclica.
  • Porém, existe outra forma de fosforilação, a fotofosforilação acíclica onde os elétrons das moléculas de clorofila 'a' (P700), excitados pela luz, são captados pela ferredoxina, mas ao em vez de passarem pela cadeia transportadora são captados pelo NADP (nicotinamida adenina dinucleotídeo Fosfato) e não retornam para o P700. Este fica temporariamente deficiente de elétrons. Esses elétrons são repostos por outros provenientes de outro Em seguida passa aos citocromos e plastocianina até serem captados pelo P700, que se recompõe. Este processo de transporte também promove a síntese do (ATP). Já o P680 fica deficiente de elétrons. Esses elétrons serão repostos pela fotólise da água. A quebra da molécula da água por radiação (fotólise da água) produz íons de hidrogênios e hidróxidos. Os elétrons dos íons hidróxidos são utilizados para recompor o P680 e os íons hidrogênio são aceptados pelo NADP, com isso ocorre a formação de água oxigenada (H2O2) oriunda da reação de síntese entre as hidroxilas. A água oxigenada é decomposta pela célula em água e O2 sendo este último liberado do processo como resíduo. Com a repetição do processo forma-se o aporte energético e de NADPHs necessários para a fase escura.
Equação: 12H2O + 6NADP + 9ADP + 9P -(luz)→ 9ATP + 6NADPH2 + 3O2+ 6H2O
Ciclo de Calvin e fixação do carbono.
  • A fase química ou "fase escura" é um ciclo descoberto pelos cientistas Melvin CalvinAndrew Benson e James Bassham. Nessa fase chamada de ciclo de Calvin ou ciclo das pentoses, que ocorre no estroma do cloroplasto, o tilacoide fornece ATP e NADPH2 ao estroma do cloroplasto, onde se encontra a pentose (ribulose fosfato), essa pentose ativada por um fosfato, fixa o carbono que provém do dióxido de carbono do ar sob a ação catalisadora da "RuBisCO" (ribulose bifosfato carboxilase-oxidase) e em seguida é hidrogenada pelo NAPH2 formando o aldeído que dará origem à glicose. Para a síntese de uma molécula de glicose são fixadas seis de dióxido de carbono, permitindo que o processo recicle a ribulose fosfato. devolvendo-a ao estroma. Desta fase resulta a formação de compostos orgânicos como a glicose, necessária à atividade da planta. Esta fase é denominada fase escura, no entanto é um termo utilizado de forma inadequada pois para a "RuBisCO" entrar em atividade determinando a fixação do CO2 atmosférico para a formação de moléculas de glicose, ela precisa estar num estado reduzido, e para isso acontecer é necessário que a luz esteja presente.
Equação: 6CO2 + 12NADPH2 + 18ATP -(enzimas)→ 12NADP + 18ADP + 18P + 6H2O + C6H12O6
Plantas jovens consomem mais dióxido de carbono e libertam mais oxigénio, pois o carbono é incorporado a sua estrutura física durante o crescimento.
É importante realçar que a fase escura não ocorre apenas à noite ou na ausência de luz, o nome refere-se ao facto desta fase não necessitar da luz para funcionar. Ela acontece logo após a fase clara numa reação em cadeia até que o substrato se esgote.
A equação geral da formação de glicose é resultado da soma das duas equações:
Equação simplificada da fase fotoquímica: 12H2O + 12NADP + 18ADP + 18P -(luz)→ 18ATP + 12NADPH2 + 6O2
Equação simplificada da fase química: 6CO2 + 12NADPH2 + 18ATP -(enzimas)→ 12NADP + 18ADP + 18P + 6H2O + C6H12O6
Somando-as e simplificando, obtém-se a equação geral da fotossíntese: 12H2O + 6CO2 → 6O2 +C6H12O6 + 6H2O

Organismos fotossintetizadores[editar | editar código-fonte]

Além das plantas verdes, incluem-se entre os organismos fotossintéticos, as algas (como as diatomáceas, as euglenófitas), as cianofíceas (algas verde-azuladas) e diversas bactérias.

Fatores que afetam:[editar | editar código-fonte]

  • Concentração de dióxido de carbono: É geralmente o fator limitante da fotossíntese para as plantas terrestres em geral, devido a sua baixa concentração na atmosfera, que é em torno de 0,04%.
  • Temperatura: Para a maioria das plantas, a temperatura ótima para os processos fotossintéticos está entre 30 e 38 °C . Acima dos 45°C a velocidade da reação decresce, pois cessa a atividade enzimática.
  • Água: A água é fundamental como fonte de hidrogênio para a produção da matéria orgânica. Em regiões secas as plantas têm a água como um grande fator limitante.
  • Morfologia foliar

Ponto de compensação fótico[editar | editar código-fonte]

É chamado "ponto de compensação fótico" o instante em que as velocidades de fotossíntese e respiração são exatamente ou simplesmente as mesmas. Neste instante toda a glicose produzida na fotossíntese é "quebrada" na respiração, e todo dióxido de carbono(CO2) gasto na fotossíntese é produzido na respiração.
A importância da fotossíntese 
A fotossíntese é o principal processo de transformação de energia na biosfera. Ao alimentarmo-nos, parte das substâncias orgânicas, produzidas graças à fotossíntese, entram na nossa constituição celular, enquanto outras (os nutrientes energéticos) fornecem a energia necessária às nossas funções vitais, como o crescimento e a reprodução. Além do mais, ela fornece oxigênio para a respiração dos organismos heterotróficos. É essencial para a manutenção da vida na Terra.

Subprodutos remotos da fotossíntese[editar | editar código-fonte]

De acordo com a teoria da geração orgânica do petróleo, indiretamente energia química presente no petróleo e no carvão, que são utilizados pelo ser humano como combustíveis, têm origem na fotossíntese, pois, são produtos orgânicos provenientes de seres vivos (plantas ou seres que se alimentavam de plantas) de outras eras geológicas.

Referências

Bibliografia[editar | editar código-fonte]

  • Asimov, Isaac. Photosynthesis. New York, London: Basic Books, Inc., 1968. ISBN 0-465-05703-9
  • Bidlack JE; Stern KR, Jansky S. Introductory plant biology. New York: McGraw-Hill, 2003. ISBN 0-07-290941-2
  • Blankenship RE. Molecular Mechanisms of Photosynthesis. 2nd ed. [S.l.]: John Wiley & Sons Inc, 2008. ISBN 0-470-71451-4
  • Govindjee. Bioenergetics of photosynthesis. Boston: Academic Press, 1975. ISBN 0-12-294350-3
  • Govindjee Beatty JT,Gest H, Allen JF. Discoveries in Photosynthesis. Berlin: Springer, 2006. vol. 20. ISBN 1-4020-3323-0
  • Gregory RL. Biochemistry of photosynthesis. New York: Wiley-Interscience, 1971. ISBN 0-471-32675-5
  • Rabinowitch E, Govindjee. Photosynthesis. London: J. Wiley, 1969. ISBN 0-471-70424-5
  • Reece, J, Campbell, N. Biology. San Francisco: Pearson, Benjamin Cummings, 2005. ISBN 0-8053-7146-X

Nenhum comentário:

Postar um comentário