domingo, 31 de julho de 2016

POLINÔMIO

Podemos ver no artigo de Divisão de polinômios o método tradicional para a divisão, utilizando o algoritmo da divisão. Entretanto, dois matemáticos (Paolo Ruffini e A. Briot) criaram um dispositivo prático para realizar esta divisão, dispositivo este que recebeu seus nomes: dispositivo de Briot-Ruffini.
Esse algoritmo é utilizado para dividirmos polinômios por um binômio do tipo (x-a). Esse dispositivo usará apenas os coeficientes do polinômio e o termo constante (a).
Chamemos de p(x) o polinômio a ser dividido (dividendo); e h(x) o divisor no qual h(x)=x-a. Com isso, a estrutura do dispositivo é a seguinte:

Para melhor compreendermos como este dispositivo funciona, utilizá-lo-emos em um exemplo, e explicaremos passo a passo seu processo.
Exemplo:
Efetue a divisão de p(x) por h(x), na qual:


Agora multiplique esse termo repetido pelo divisor, o resultado será somado ao próximo termo do dividendo p(x).
 

Repita o processo agora para o novo elemento, multiplique esse número pelo divisor e some-o ao próximo termo.


Obtemos o resto 0 e um quociente da seguinte forma:
Para verificarmos se a divisão foi feita de forma correta, podemos utilizar o algoritmo da divisão que diz o seguinte:
Dessa forma, temos:
Logo, a divisão foi feita corretamente, pois ao verificar os termos da divisão no algoritmo da divisão constatamos que a igualdade é verdadeira.

Por Gabriel Alessandro de Oliveira
Graduado em Matemática
Equipe BrasilEscola
Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:
OLIVEIRA, Gabriel Alessandro De. "Divisão de Polinômios utilizando o dispositivo de Briot-Ruffini "; Brasil Escola. Disponível em <http://brasilescola.uol.com.br/matematica/divisao-polinomios-utilizando-dispositivo-briotruffini.htm>. Acesso em 31 de julho de 2016.Os polinômios, a priori, formam um plano conceitual importante na álgebra, entretanto possuem também uma relevante importância na geometria, quando se deseja calcular expressões que envolvem valores desconhecidos.
A definição de polinômio abrange diversas áreas, pois podemos ter polinômios com apenas um termo na expressão algébrica, como por exemplo: 2x, y, 4z, 2, 5, etc. Mas podemos possuir polinômios com uma infinidade de termos. Por exemplo:
P(x)=an xn+a(n-1) x(n-1)+...+a2 x2+a1 x+a0
Como podemos notar, polinômios são compostos pelas várias expressões algébricas, desde aquelas que envolvem apenas números, até as que apresentam diversas letras, potências, coeficientes, entre outros elementos dos polinômios.
Os polinômios se encontram em um âmbito da matemática denominado álgebra, contudo a álgebra correlaciona o uso de letras, representativas de um número qualquer, com operações aritméticas. Portanto, podemos, assim, efetuar as operações aritméticas nos polinômios, que são: adição, subtração, divisão, multiplicação, potenciação e radiciação.
Buscaremos, então, nesta seção, abarcar todas as propriedades dos polinômios, assim como as operações aritméticas desses números.

Por Gabriel Alessandro de Oliveira
Graduado em Matemática

Nenhum comentário:

Postar um comentário