METABOLISMO ENERGÉTICO
Os seres vivos utilizam a molécula de adenosina trifosfato (ATP) como fonte de energia para diferentes ações, desde o ato de virar uma página até os batimentos cardíacos. Basicamente, o ATP é constituído por um nucleotídeo composto pela base nitrogenada (adenina) ligada a um açúcar (ribose) e três fosfatos, cuja energia é armazenada nas ligações químicas entre os fosfatos. O rompimento dessa ligação libera fosfato que é utilizado nos processos celulares.
Quando a molécula de ATP perde um fosfato, essa se torna uma molécula com dois fosfatos, denominada adenosina difosfato (ADP), entretanto, quando o ATP é degradado a sua forma mais simples, liberando dois fosfatos e, consequentemente, mais energia, torna-se uma molécula com apenas um fosfato, denominada adenosina monofosfato (AMP). O ATP é utilizado e gerado durante os processos de respiração celular, tanto na presença de oxigênio (respiração aeróbia) quanto na ausência de oxigênio (respiração anaeróbia e fermentação)
Estrutura do ATP, ADP e AMP (Foto: Objetos educacionais/Mec)
RESPIRAÇÃO
A respiração divide-se em duas fases: a anaeróbia, que compreende a etapa da glicólise, que ocorre na ausência do oxigênio no citoplasma das células eucariótica e procariótica, e aeróbia que ocorre na presença do oxigênio. A fase aeróbia divide-se em duas etapas: o ciclo de Krebs que ocorre na matriz mitocondrial das células eucarióticas e no citoplasma das células procarióticas, e a cadeia respiratória que ocorre nas cristas mitocondriais e próximas à face interna da membrana plasmática, em eucariotos e procariotos, respectivamente.
Esquema simplificado dos processos que envolvem a respiração aeróbia (Foto: Objetos educacionais/Mec)
Glicólise: nessa etapa, a glicose (C_6_6H_{12}_{12}O_6_6) é oxidada, em um processo denominado glicólise, usando dois ATPs por moléculas de glicose para fornecer a energia inicial. Ao final da glicólise, produzem duas moléculas de piruvato, 4 ATPs, sendo que 2 ATPs irão repor os utilizados inicialmente, havendo, portanto um saldo final de 2 ATPs e a liberação de elétrons energizados e íons H^+^+, são capturados por aceptores de elétrons denominados NAD^+^+ (do inglês Nicotinamide Adenine Dinucleotide), formando, no final da glicólise, dois equivalentes reduzidos em NADH^+^+.
Ciclo de Krebs: o piruvato, com três carbonos, produzido na glicólise, passa para o interior das mitocôndrias, onde é oxidado até o grupo acetil, com dois carbonos, pela ação da piruvato desidrogenase, liberando uma molécula de gás carbônico (CO_2_2) e energia, sendo parte dela captada quando NADH^+^+ é reduzido, formando NADH_2_2 e, a outra parte da energia é captada quando o grupo acetil é combinado com a coenzima A, formando a acetilcoenzima A (Acetil CoA). O Acetil CoA combina-se com um composto de quatro carbonos, o ácido oxalacético, e libera a coenzima A, formando o ácido cítrico. Ao longo do ciclo, o ácido cítrico perde dois carbonos na forma de CO_2_2 e oito hidrogênios que são captados por NAD e por um outro aceptor de elétrons chamado FAD (do inglês, Flavin Adenine Dinucleotide). Ao final, forma-se o ácido oxalacético, que novamente se unirá ao acetil CoA, reiniciando o ciclo. Durante esse processo, formam-se também duas moléculas de GTP (do inglês Guanosine Triphosphate), muito semelhante ao ATP.
Cadeia respiratória ou fosforilação oxidativa: nessas regiões há enzimas oxidativas organizadas em sequência, denominadas citocromos, que atuam como transportadores de elétrons. A essa série de enzimas dá-se o nome de cadeia respiratória. As moléculas de NADH e FADH formadas na glicólise e no ciclo de Krebs são oxidadas na cadeia respiratória, transferindo os elétrons para os citocromos. À medida que os elétrons de hidrogênio provenientes dessas moléculas passam pelos transportadores, esses são oxidados e perdem energia que é armazenada em moléculas de ATP, através da fosforilação do ADP. Por esse fato, a cadeia respiratória também é conhecida como fosforilação oxidativa. O receptor final do hidrogênio é o oxigênio, formando a água. É de extrema importância o fornecimento constante de oxigênio, caso contrário os transportadores ficariam sempre com seus hidrogênios reduzidos, sem condições de receber novos hidrogênios, interrompendo a respiração. A cadeia respiratória é responsável pela maior parte de ATP produzido pela célula. Ao final, produz-se 8 NADH_2_2, 2 FADH_2_2 e 34 ATP.
FERMENTAÇÃO
A fermentação ocorre na ausência do oxigênio no citosol da célula eucariótica e procariótica. A glicose é degradada em substâncias mais simples, como o ácido lático (fermentação lática) e o álcool etílico (fermentação alcoólica). Tanto na fermentação lática como alcoólica há um saldo de apenas 2 moléculas de ATP e, em ambos os processos, iniciam com o ácido pirúvico obtido da glicólise, como descrito na respiração aeróbia.
FERMENTAÇÃO LÁTICA | FERMENTAÇÃO ALCOÓLICA |
Realizada por certas bactérias, protozoários, fungos e células do tecido muscular (durante intensa atividade física, há ausência de oxigênio, com isso as células realizam fermentação, e a liberação do ácido lático ocasiona a fadiga muscular) e hemácias. | Realizada por certas bactérias e leveduras. |
Processo utilizado para produção de iogurte, conservas, entre outros. | Processo utilizado para produção de vinho, cerveja, pão (o fermento biológico contendo o fungo, acrescentado na massa, reage com o açúcar, produzindo CO2 que fica armazenado em cavidades dentro da massa), obtenção de álcool pela cana-de-açúcar, entre outros. |
Piruvato é reduzido a lactato pela ação da enzima lactato-desidrogenase, utilizando íons de hidrogênio provenientes da reoxidação do NADH2 formados na glicólise. | Piruvato é convertido a acetaldeído através da ação piruvato descarboxilase, gerando CO2 e NADH e reoxidando o NADH, através da álcool desidrogenase, o acetaldeído é convertido em álcool etílico |
Como não há oxigênio, o aceptor final de hidrogênio é o próprio piruvato. | Como não há oxigênio, o aceptor final de hidrogênio é o acetaldeído. |
EXERCÍCIOS RESOLVIDOS
(Enem - 2012) Há milhares de anos o homem faz uso da biotecnologia para a produção de alimentos como pães, cervejas e vinhos. Na fabricação de pães, por exemplo, são usados fungos unicelulares, chamados de leveduras, que são comercializados como fermento biológico. Eles são usados para promover o crescimento da massa, deixando-a leve e macia. O crescimento da massa do pão pelo processo citado é resultante da:
a) liberação de gás carbônico.
b) formação de ácido lático.
c) formação de água.
d) produção de ATP.
e) liberação de calor.
b) formação de ácido lático.
c) formação de água.
d) produção de ATP.
e) liberação de calor.
Gabarito: O processo de produção de pães ocorre por fermentação alcoólica, um processo anaeróbico com produção de etanol e de gás carbônico. É o gás carbônico o responsável pelo crescimento da massa do pão. Letra A.
Nenhum comentário:
Postar um comentário